Do you really know how to do JESD78 latch-up testing?

Preview of topics for our new user guide.

Marty Johnson

JESD78 Working Group

Introduction

- Latch-up testing is not like ESD HBM or ESD CDM testing
- Requires more knowledge of the product
- JESD78 working group has worked hard to make the test thorough and accurate
- Last year, the Industry Council on ESD released a survey
 - Showing how the user community had concerns and
 - Customers were not certain to the test's effectiveness in some applications
 - One conclusion was that there should be a <u>User Guide</u>
- JESD78 Working Group will give an overview of topics that will be discussed

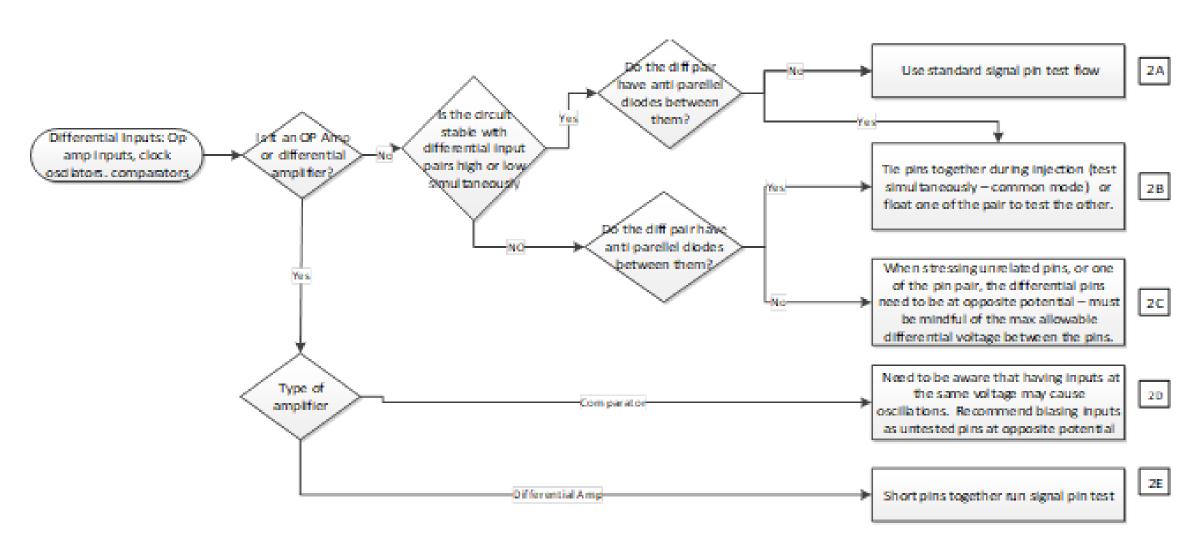
Outline

- Setting up a LUP Test Program
- Power Supply Assignments
- Special Pins
- Maximum Junction Temperature Calculate and Monitor
- I-Test versus E-Test Which to Use?
- Tester Calibration
- Waveform Measurements / Calibration
- Pre & Post Voltage/Current Bias/Clamp Levels on Pulse Supply
- Maximum Stress Voltage (MSV)
- Latches in Power Clamps
- Hardware for Testing of HV products
- Testing of SOI, GaN and other products
- Data Review & Analysis
- Destructive vs. Non-Destructive Latch-up

Setting up a LUP Test Program

- Pin continuity testing (at beginning and end)
- Power up/down sequence
- Pin assignment (Input, Output, Supply, or Ground)
 - Decision flow
 - Special pins (see dedicated section)
- Validating the test program
 - IDD checks (with Input pins at High, Low, or Float)
 - Powered Curve-Trace to check signal pin assignment (Input vs. Output)
- Failure detection
- Compare before vs. after LUP stress:
 - Curve-Trace (unpowered/powered)
 - IDD measurements
 - Standard tester datalogs

Power Supply Assignments


Issue:

- In most test systems, there are insufficient power supplies to provide power individually to each supply pin (group)
- Grouping of supply pins (groups) allows efficient power supplies allocation
- However, some care must be taken so LU detection will not be compromised
- User Guide Coverage (ref: JESD78F.01, sec 5.4):
 - Guidance and examples how to set tester power supplies when
 - Sets of pins with the same V_{maxOP} (V_{minOP}) with large variances in current draw should be separated
 - Lessens possible masking of latch-up on the lower current draw pins
 - Sets of pins with the same V_{maxOP} (V_{minOP}) with small or no variances in current draw can be combined if not enough supplies available
 - Throughout testing, all supplies used must be monitored
 - All currents and voltages both before and after testing to ensure MSV is correct

Special Pins

- Issue -- CMOS/BiCMOS devices have become increasingly complex in the types of circuits contained in any individual device
 - Many require engineering effort to determine the proper manner to set up and perform latch-up testing
 - Products contain individual pins that do not fit cleanly into the categories
 - Pins may require unique pre-configuration or special data assessment methods to properly perform latch-up testing
- User Guide Coverage: Special Pins from Annex A provide guidance
 - To support testing these non-standard pin types/configurations
 - More detailed guidance is planned for the JESD78 User Guide
 - The JESD78F.01 Annex A is not expected to address every possible special pin case
 - So, we are soliciting inputs on special cases not currently addressed

Special Pins -- Flowchart

Maximum Junction Temperature – Calculate and Monitor

- Why use junction temperature?
 - Bipolar latch-up occurs at the junction level, typically between wells and substrate
 - Latch-up can occur anywhere on the die;
 - Varies spatially across the die and
 - Is highly temperature dependent
 - Highest T_j on the die during field operation (T_jmax) should be used

User Guide coverage:

- Explain temperature measuring and monitoring techniques
- Methods to convert from junction to case and ambient temperatures
- Describe information necessary to calculate between junction, case and ambient
 - Heat transfer of package using θja and θjc plus power consumption of product

Current Compliance in Voltage Sources

Issue:

- Latch-up testing requires one or more power supplies
- Need to set voltage value AND current compliance for each supply
- What compliance level to set?
- What to do when current compliance is reached?
 - A test with a voltage supply in compliance is not valid

User Guide Coverage:

- Initial recommendations for current compliance levels
- Guidance on checking for current compliance in data logs
 - Did compliance occur during stress and exit compliance after stress
 - Compliance during stress may mask latch-up susceptibility
- Recommended procedures to follow if current compliance reached
 - Adjusting levels to avoid compliance
 - Determining if reaching compliance was the result of latch-up
 - Guidance of when a valid test can not be done

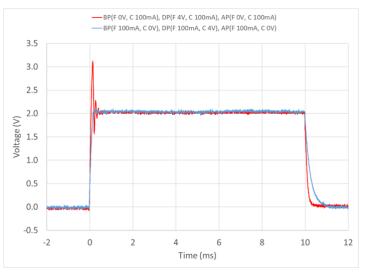
I-Test versus E-Test – Which to Use?

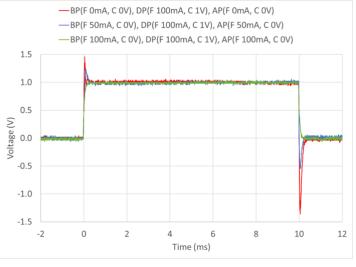
Issue

- JESD78F.01 allows Signal pin test with
 - I-Test: Current stress with voltage compliance or
 - E-Test: Voltage stress with current compliance
- In principle they are the same, in practice they are not
- Which to use?
 - Incorrect choice can lead to unexpected stress

User Guide Coverage

- Situations in which reaching compliance results in stress overshoots
- Signal pin types
 - Some better with I-Test
 - Some better with E-Test


Waveform Measurements


Issues

- Are waveforms in specification?
- Are there pulse source anomalies?
- Evaluating issues during product testing

User Guide Coverage

- Measurement setup
- Oscilloscope specifications
- Voltage and current probes
- Measurement system verification
- Test setup for latch-up pulse source verification
- When is voltage measurement sufficient
 - Current measurement not always needed
- How to measure waveforms on product

Pulse Source Measurement Calibration

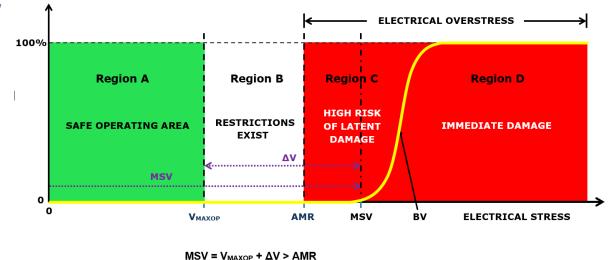
Issue:

- Measurements of the latch-up pulse source may need to be made which can be difficult.
 - How are measurements made?
 - Do these measurements lead to system calibration?

User Guide Coverage (ref: JESD78F.01, Annex F.01):

- When test results or when test conditions need to be verified:
 - Oscilloscope measurements may be the only means of verification.
- The measurements discussed in Annex F.01, show possible anomalies that can occur under certain test conditions.
 - Discuss the use of different loads as a means of possibly matching the load of your device.
 - Discuss manual test methods which make it easier to setup and capture waveforms.
 - System calibration may need certain load conditions for increased understanding

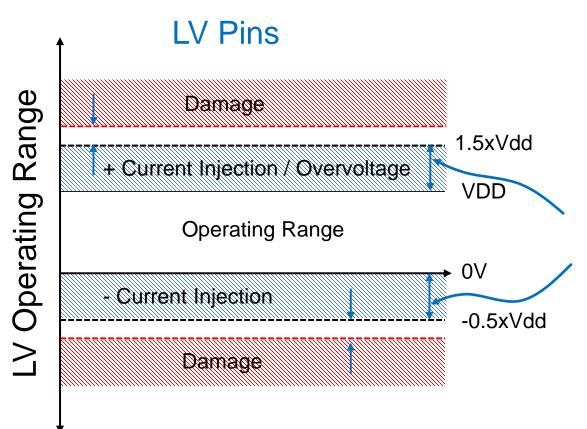
Pre & Post Voltage/Current Bias/Clamp Levels on Pulse Supply


- Issue: How to set the correct value?
 - Are default values always acceptable?
 - What values are the best?
 - Is there a difference between I-Test and E-Test

- User Guide coverage:
 - Describe how Pre & Post biases work
 - Describe how Pre & Post clamps work
 - How these settings can affect stress outcome?

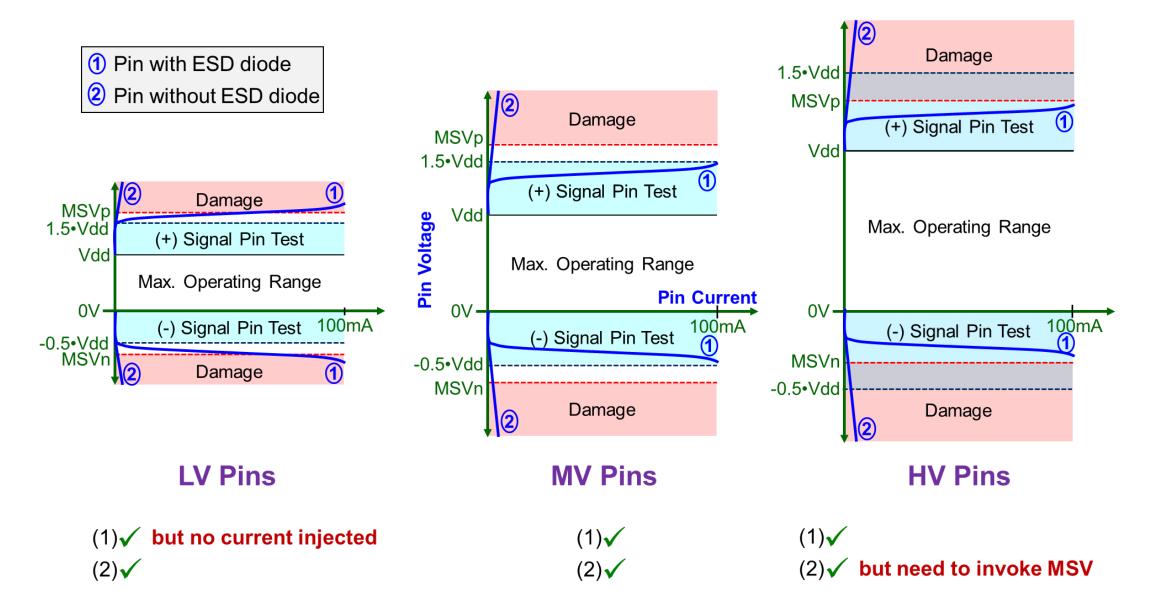
Maximum Stress Voltage (MSV)

Key Issue: How to Determine MSV for your product pin(s)


- What Does User Guide Offer
 - An Introduction to MSV
 - How to determine MSV in several cases
 - Why MSV is not AMR

 MSV is the Maximum allowable Stress Voltage or Current limit during LU stress that prevents all non-LU reliability failure mechanisms from initiating latent damage during stress

Maximum Stress Voltage (MSV)


Key Issue: $1.5xV_{maxOP}$ and $-0.5xV_{maxOP}$ voltage limits only work for some voltage ranges.

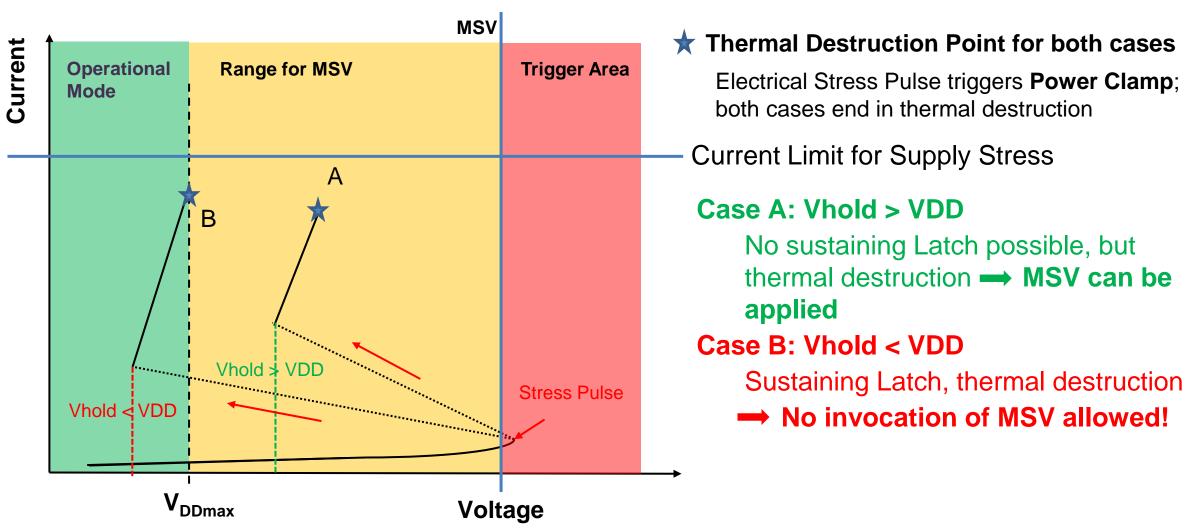
Ideal Situation:

- IOs with ESD diodes: current is injected before reaching V limit
- IOs without ESD diodes: V limit reached without damage

Voltage Range Comparison – LV, MV, HV

Usage of MSV at Power Clamps

Issue:


- Usage of MSV in previous versions allowed reduction of Stress Voltage upon physical damage for HV
- In JESD78F.01 Latchup definition was extended beyond Triggering of Thyristor structures to Power Clamps
- Now: Possible uncertainties arise regarding usage of MSV for HV Power Clamps if physical damage occurs at HV Clamps at Stress Voltages < 1.5 x V_{maxOP}

Approach in User Guide Document:

- Clear guidance for usage of MSV provided:
 - It is allowed to invoke MSV also for Power Clamps.
 - Condition: Holding Voltage of Snapback >> Vsupply

Latches in Power Clamps

Triggering of Power Clamp by Stress Pulse

WH

Hardware for Testing of HV products

Issue:

- More Products in Automotive and Industrial Applications have Pin Voltages
 V_{maxOP} ≥ 100V
- Commercial Testers: No solution available
- Products with Pin Voltage Classes >100V --- unable to be tested on commercial hardware

Approach in User Guide Document:

- Test Hardware
 - Specifications for self assembled or modified test solutions must be provided
 - Pins must not be defined as "not stressed" or put to GND
 - Describe work around solutions possible with actual test hardware
- Test Procedure:
 - Preferred solution: To be stressed with V_{maxOP} of Test System (100V)
 - Pins with V_{maxOP} > 100V, which were stressed at lower Voltages than specified according to datasheet, must be reported

Testing of SOI, GaN and other products

Issue:

- It is a common assumption that Latchup cannot occur in products of given technologies like SOI, GaN, other compound semiconductors
- Tests are skipped without deeper understanding of the technology

Approach in User Guide:

- Clear guidance must be provided for SOI or non-Si technologies, e.g.
 - JESD78 Test will determine possible allowed technologies to skip testing:
 - WBG Semiconductors (Eg > 1.5eV)
 - SOI Technologies with Thickness of active Si layer < 1 μm
 - Fully/ Partially depleted SOI: PW/NW implants in bulk Si
 - Hybrid SOI/Bulk

Data Review & Analysis

- Issue: Monitoring & Analyzing Data
 - Supply Collapse
 - Injected Currents
 - Pre & Post Stress Pulse Bias Currents
 - Testing Order
 - State Change
- User Guide coverage:
 - How to analyze data
 - Detection of possible invalids and/or failures
 - What it means
 - Need to adjust clamps
 - Adjust the pin set-up
 - Need to re-run stress until no invalids and/or failures

Destructive vs. Non-Destructive Latch-up

- Issue Latch-up events can be destructive or non-destructive
 - If the silicon substrate and interconnect associated with the latchup event can sustain the current flow and
 - Without damage until the latch-up event is terminated
- User Guide Coverage: Discuss Methods of Assessment
 - Destructive latch-up factors affecting susceptibility to damage
 - Non-destructive vs destructive latch-up post stress evaluation

